首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   2篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   8篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有53条查询结果,搜索用时 578 毫秒
21.

Background  

The tolerability and efficacy of single dose albendazole (400 mg), diethylcarbamazine citrate (DEC) (6 mg/kg bodyweight) or co-administration of albendazole (400 mg) + DEC (6 mg/kg bodyweight) was studied in 54 asymptomatic Wuchereria bancrofti microfilaraemic volunteers in a double blind hospital-based clinical study.  相似文献   
22.
We have previously shown that the 16-kDa N-terminal fragment of human prolactin (16K hPRL) has antiangiogenic properties, including the ability to induce apoptosis in vascular endothelial cells. Here, we examined whether the nuclear factor-kappaB (NF-kappaB) signaling pathway was involved in mediating the apoptotic action of 16K hPRL in bovine adrenal cortex capillary endothelial cells. In a dose-dependent manner, treatment with 16K hPRL induced inhibitor kappaB-alpha degradation permitting translocation of NF-kappaB to the nucleus and reporter gene activation. Inhibition of NF-kappaB activation by overexpression of a nondegradable inhibitor kappaB-alpha mutant or treatment with NF-kappaB inhibitors blocked 16K hPRL-induced apoptosis. Treatment with 16K hPRL activated the initiator caspases-8 and -9 and the effector caspase-3, all of which were essential for stimulation of DNA fragmentation. This activation of the caspase cascade by 16K hPRL was also NF-kappaB dependent. These findings support the conclusion that NF-kappaB signaling plays a central role in 16K hPRL-induced apoptosis in vascular endothelial cells.  相似文献   
23.
24.
The 16-kDa N-terminal fragment of human prolactin (16K hPRL) is a potent angiostatic factor that inhibits tumor growth in mouse models. Using microarray experiments, we have dissected how the endothelial-cell genome responds to 16K hPRL treatment. We found 216 genes that show regulation by 16K hPRL, of which a large proportion turned out to be associated with the process of immunity. 16K hPRL induces expression of various chemokines and endothelial adhesion molecules. These expressions, under the control of nuclear factor-kappaB, result in an enhanced leukocyte-endothelial cell interaction. Furthermore, analysis of B16-F10 tumor tissues reveals a higher expression of adhesion molecules (intercellular adhesion molecule 1, vascular cell adhesion molecule 1, or E-selectin) in endothelial cells and a significantly higher number of infiltrated leukocytes within the tumor treated with 16K hPRL compared with the untreated ones. In conclusion, this study describes a new antitumor mechanism of 16K hPRL. Because cellular immunity against tumor cells is a crucial step in therapy, the discovery that treatment with 16K hPRL overcomes tumor-induced anergy may become important for therapeutic perspectives.  相似文献   
25.
Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications.  相似文献   
26.
27.
28.
29.
Sirtuin 3 (Sirt3), a major mitochondrial NAD+-dependent deacetylase, targets various mitochondrial proteins for lysine deacetylation and regulates important cellular functions such as energy metabolism, aging, and stress response. In this study, we identified the human 8-oxoguanine-DNA glycosylase 1 (OGG1), a DNA repair enzyme that excises 7,8-dihydro-8-oxoguanine (8-oxoG) from damaged genome, as a new target protein for Sirt3. We found that Sirt3 physically associated with OGG1 and deacetylated this DNA glycosylase and that deacetylation by Sirt3 prevented the degradation of the OGG1 protein and controlled its incision activity. We further showed that regulation of the acetylation and turnover of OGG1 by Sirt3 played a critical role in repairing mitochondrial DNA (mtDNA) damage, protecting mitochondrial integrity, and preventing apoptotic cell death under oxidative stress. We observed that following ionizing radiation, human tumor cells with silencing of Sirt3 expression exhibited deteriorated oxidative damage of mtDNA, as measured by the accumulation of 8-oxoG and 4977 common deletion, and showed more severe mitochondrial dysfunction and underwent greater apoptosis in comparison with the cells without silencing of Sirt3 expression. The results reported here not only reveal a new function and mechanism for Sirt3 in defending the mitochondrial genome against oxidative damage and protecting from the genotoxic stress-induced apoptotic cell death but also provide evidence supporting a new mtDNA repair pathway.  相似文献   
30.

Introduction

Micronized dehydrated human amnion/chorion membrane (μ-dHACM) is derived from donated human placentae and has anti-inflammatory, low immunogenic and anti-fibrotic properties. The objective of this study was to quantitatively assess the efficacy of μ-dHACM as a disease modifying intervention in a rat model of osteoarthritis (OA). It was hypothesized that intra-articular injection of μ-dHACM would attenuate OA progression.

Methods

Lewis rats underwent medial meniscal transection (MMT) surgery to induce OA. Twenty four hours post-surgery, μ-dHACM or saline was injected intra-articularly into the rat joint. Naïve rats also received μ-dHACM injections. Microstructural changes in the tibial articular cartilage were assessed using equilibrium partitioning of an ionic contrast agent (EPIC-μCT) at 21 days post-surgery. The joint was also evaluated histologically and synovial fluid was analyzed for inflammatory markers at 3 and 21 days post-surgery.

Results

There was no measured baseline effect of μ-dHACM on cartilage in naïve animals. Histological staining of treated joints showed presence of μ-dHACM in the synovium along with local hypercellularity at 3 and 21 days post-surgery. In MMT animals, development of cartilage lesions at 21 days was prevented and number of partial erosions was significantly reduced by treatment with μ-dHACM. EPIC-μCT analysis quantitatively showed that μ-dHACM reduced proteoglycan loss in MMT animals.

Conclusions

μ-dHACM is rapidly sequestered in the synovial membrane following intra-articular injection and attenuates cartilage degradation in a rat OA model. These data suggest that intra-articular delivery of μ-dHACM may have a therapeutic effect on OA development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号